Uncertainty principle and kinetic equations
نویسندگان
چکیده
منابع مشابه
Uncertainty Quantification for Kinetic Equations
Kinetic equations contain uncertainties in their collision kernels or scattering coefficients, initial or boundary data, forcing terms, geometry, etc. Quantifying the uncertainties in kinetic models have important engineering and industrial applications. In this article we survey recent efforts in the study of kinetic equations with random inputs, including their mathematical properties such as...
متن کاملMaximum Entropy Principle for Lattice Kinetic Equations
where ci is the D-dimensional vector of the ith link, and i 1, . . . , b. The right-hand side of Eq. (1) is the LBGK collision integral Di , the function N eq i is the local equilibrium, and v $ 0 is a dimensionless parameter. As the state of the lattice is updated long enough, the dynamics of Ni becomes governed by macroscopic equations for a finite system of local averages. Depending on the...
متن کاملAn Uncertainty Principle for Fermions with Generalized Kinetic Energy
We derive semiclassical upper bounds for the number of bound states and the sum of negative eigenvalues of the one-particle Hamiltonians h = f ( ~ ) + V(x), acting on L2(N"). These bounds are then used N to derive a lower bound on the kinetic energy ~ ( q ~ , f ( i V y ) 0 ) for an j = l N-fermion wavefunction ~. We discuss two examples in more detail: f(P) = ]P[ and f(p) = (p2 + m2)1/2 _ m, bo...
متن کاملBosonic field equations from an exact uncertainty principle ∗
X iv :h ep -t h/ 03 07 25 9 v1 26 J ul 2 00 3 Bosonic field equations from an exact uncertainty principle ∗ Michael J. W. Hall, Kailash Kumar, and Marcel Reginatto Theoretical Physics, IAS, Australian National University, Canberra ACT 0200, Australia and Physikalisch-Technische Bundesanstalt, Bundesallee 100 38116 Braunschweig, Germany Abstract A Hamiltonian formalism is used to describe ensemb...
متن کاملGerbes and Heisenberg’s Uncertainty Principle
We prove that a gerbe with a connection can be defined on classical phase space, taking the U(1)–valued phase of Feynman path integrals as Čech 2–cocycles. A quantisation condition on the corresponding 3–form field strength is derived and proved to be equivalent to Heisenberg’s uncertainty principle.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2008
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2008.07.004